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We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric
spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of (Globally) symmetric spaces

non-compact type of non-compact type

Then G := Isom(X) is a non-compact e~ Let X be an irreducible symmetric space
(almost) simple Lie group of non-compact type

Let G be an (almost) simple Lie group v~  Then X := G/K is an irreducible sym-

and K < G be the maximal compact metric space of non-compact type
subgroup
SO*(1,n) RH™

And we wish to use Lie theoretic facts about GG to prove geometric properties of X.



GL(n,R) P(n,R)

P(n,R) is the set of all symmetric and
positive definite n x n matrices, which
is an open set in the vector space of all
symmetric matrices S(n,R).

We identify tangent bundle of P(n,R)
with P(n,R) x S(n,R). Now the family
of inner products

(X,Y), = tr(p” ' Xp 1Y)

for p € P(n,R) defines a Riemannian
metric on P(n,R).

Theorem
P(n,R) is a CAT(0) symmetric space.
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Theorem
The action

t:GL(n,R) ~ P(n,R)
ty(p) := gpg"

is by isometries where the stabilizer of
Ie P(n,R) is O(n,R).



GL(n,R)

GL(n,R) has an order 2 automorphism

GL(n,R) - GL(n,R)
g= ()T
which induces
gl(n,R) — gl(n,R)
X —XT

This is a linear involution thus it is diag-
onalizable

gl(n,R) = so(n,R) + S(n,R)

P(n,R)

Theorem
P(n,R) is a CAT(0) symmetric space.

Theorem
The action

t:GL(n,R) ~ P(n,R)
ty(p) := gpg"

is by isometries where the stabilizer of
Ie P(n,R) is O(n,R).



T-closed, exp-closed, closed “completely” geodesic,

subgroups of GL(n,R) closed and embedded sub-
manifolds of P(n,R)

Definition
Let G < GL(n,R) be a closed
subgroup.
» (G is called T-closed if it is closed
under matrix transpose G' = G.
» (G is called exp-closed if
X € S(n,R),exp(X) € G implies
exp(tX) e G for all te R
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Definition Theorem
Let G < GL(n,R) be a closed Let G be a T-closed, exp-closed, closed
subgroup. subgroup of GL(n,R). Then
» G is called T-closed if it is closed ™™ X:=G{I}=GnPn,R)isa
under matrix transpose G = G. completely geodesic, closed and
» G is called exp-closed if embedded submanifold. This implies it
X € S(n,R),exp(X) € G implies is a CAT(0) symmetric space.

exp(tX)e G forall teR



T-closed, exp-closed, closed “completely” geodesic,

subgroups of GL(n,R) closed and embedded sub-
manifolds of P(n,R)

Let X be a completely geodesic, closed
and embedded submanifold of P(n,R).
Then it is a CAT(0) symmetric space.



T-closed, exp-closed, closed “completely” geodesic,

subgroups of GL(n,R) closed and embedded sub-
manifolds of P(n,R)

Let X be a completely geodesic, closed
Theorem «.. and embedded submanifold of P(n,R).
Let X be a completely geodesic, closed Then it is a CAT(0) symmetric space.
and embedded submanifold of P(n,R).
Then

G :={ge GL(n,R)[ty(X) = X}

is a closed, T-closed, exp-closed
subgroup of GL(n,R) such that
X = G{I}.
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Definition
0:9—9 An embedded submanifold F € X is a
X —XT flat if it is distance isometric to R".
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Abelian subspaces of p Flats in X

Let Lie(G) =: g. The linear involution

Definition
0:9—9 An embedded submanifold F € X is a
X —XT flat if it is distance isometric to R".
is diagonalizable, thus
g=t+p
We have a one-to one correspondence
{bcpVX,Y eb,[X,Y] =0} o {flat Fc X|I e F}
Definition

The rank of X is the dimension of one
of its maximal flat.



Boundary of X
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Boundary of X

Ge :={ge G|g(§) = ¢}

Definition

The boundary ¢X of a CAT(0)
complete Riemannian manifold X is the
set
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T~ Y2 =
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tend as homeomorphisms on X.
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Now we focus on the case of real hyperbolic space.

O*(1,n) RH"

RH™ is an isotropic Riemannian mani-
fold and a CAT(-1) metric space.

The rank of RH™ is 1.




[' < O*(1,n) discrete I ~RH"

Consider a discrete subgroup I' of the
isometry group Isom(RH™) = O*(1,n).




[' < O*(1,n) discrete

Consider a discrete subgroup I' of the
isometry group Isom(RH") =~ O*(1,n). Definition
The limit set of I is the set

Ar :=T{z} n ORH"
for some x € RH™,

Definition
The critical exponent or € [0, — 1]
of I' is the number

inf{oz>0

for some x € RH™.

Z exp(—ad(y(z),z)) < oo}

vyell



There is a proof of Mostow rigidity of real hyperbolic manifolds by constructing a measure
supported on the limit set A (Patterson-Sullivan measure) and an ergodic measure for the
geodesic flow on real hyperbolic manifolds (Bowen-Margulis measure).
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We hope to understand the proof and look at possible generalizations of the theory in higher
rank.



There is a proof of Mostow rigidity of real hyperbolic manifolds by constructing a measure
supported on the limit set Ar (Patterson-Sullivan measure) and an ergodic measure for the
geodesic flow on real hyperbolic manifolds (Bowen-Margulis measure).

We hope to understand the proof and look at possible generalizations of the theory in higher
rank.

Thank you!
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