

The boundary of symmetric spaces and discrete subgroups of isometry groups

PRJ501 presentation

Rupadarshi Ray
MS21165

December 1, 2025

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

Then $G := \text{Isom}(X)$ is a non-compact (almost) simple Lie group

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

Then $G := \text{Isom}(X)$ is a non-compact (almost) simple Lie group

Let G be an (almost) simple Lie group and $K \leq G$ be the maximal compact subgroup

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

Then $G := \text{Isom}(X)$ is a non-compact (almost) simple Lie group

Let G be an (almost) simple Lie group and $K \leq G$ be the maximal compact subgroup

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

Then $X := G/K$ is an irreducible symmetric space of non-compact type

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

Then $G := \text{Isom}(X)$ is a non-compact (almost) simple Lie group

Let G be an (almost) simple Lie group and $K \leq G$ be the maximal compact subgroup

$SO^+(1, n)$

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

Then $X := G/K$ is an irreducible symmetric space of non-compact type

$\mathbb{R}H^n$

We wish to study the properties of semi-simple Lie groups (and its subgroups)/symmetric spaces of non-compact type (and its locally symmetric quotients).

Semi-simple Lie groups of non-compact type

Then $G := \text{Isom}(X)$ is a non-compact (almost) simple Lie group

Let G be an (almost) simple Lie group and $K \leq G$ be the maximal compact subgroup

$SO^+(1, n)$

(Globally) symmetric spaces of non-compact type

Let X be an irreducible symmetric space of non-compact type

Then $X := G/K$ is an irreducible symmetric space of non-compact type

$\mathbb{R}H^n$

And we wish to use Lie theoretic facts about G to prove geometric properties of X .

$GL(n, \mathbb{R})$ $P(n, \mathbb{R})$

$P(n, \mathbb{R})$ is the set of all symmetric and positive definite $n \times n$ matrices, which is an open set in the vector space of all symmetric matrices $S(n, \mathbb{R})$.

We identify tangent bundle of $P(n, \mathbb{R})$ with $P(n, \mathbb{R}) \times S(n, \mathbb{R})$. Now the family of inner products

$$\langle X, Y \rangle_p := \text{tr}(p^{-1} X p^{-1} Y)$$

for $p \in P(n, \mathbb{R})$ defines a Riemannian metric on $P(n, \mathbb{R})$.

Theorem

$P(n, \mathbb{R})$ is a $CAT(0)$ symmetric space.

$$GL(n, \mathbb{R})$$

$$P(n, \mathbb{R})$$

Theorem

$P(n, \mathbb{R})$ is a $CAT(0)$ symmetric space.

Theorem

The action

$$t : GL(n, \mathbb{R}) \curvearrowright P(n, \mathbb{R})$$

$$t_g(p) := gpg^T$$

is by isometries where the stabilizer of $I \in P(n, \mathbb{R})$ is $O(n, \mathbb{R})$.

$GL(n, \mathbb{R})$ $P(n, \mathbb{R})$

$GL(n, \mathbb{R})$ has an order 2 automorphism

$$\begin{aligned} GL(n, \mathbb{R}) &\rightarrow GL(n, \mathbb{R}) \\ g &\mapsto (g^{-1})^T \end{aligned}$$

which induces

$$\begin{aligned} \mathfrak{gl}(n, \mathbb{R}) &\rightarrow \mathfrak{gl}(n, \mathbb{R}) \\ X &\mapsto -X^T \end{aligned}$$

This is a linear involution thus it is diagonalizable

$$\mathfrak{gl}(n, \mathbb{R}) = \mathfrak{so}(n, \mathbb{R}) + S(n, \mathbb{R})$$

Theorem

$P(n, \mathbb{R})$ is a CAT(0) symmetric space.

Theorem

The action

$$\begin{aligned} t : GL(n, \mathbb{R}) &\curvearrowright P(n, \mathbb{R}) \\ t_g(p) &:= gpg^T \end{aligned}$$

is by isometries where the stabilizer of $I \in P(n, \mathbb{R})$ is $O(n, \mathbb{R})$.

T-closed, exp-closed, closed subgroups of $GL(n, \mathbb{R})$

“completely” geodesic, closed and embedded submanifolds of $P(n, \mathbb{R})$

Definition

Let $G \leqslant GL(n, \mathbb{R})$ be a closed subgroup.

- ▶ G is called **T-closed** if it is closed under matrix transpose $G^T = G$.
- ▶ G is called exp-closed if $X \in S(n, \mathbb{R})$, $\exp(X) \in G$ implies $\exp(tX) \in G$ for all $t \in \mathbb{R}$

T-closed, exp-closed, closed subgroups of $GL(n, \mathbb{R})$

“completely” geodesic, closed and embedded submanifolds of $P(n, \mathbb{R})$

Definition

Let $G \leqslant GL(n, \mathbb{R})$ be a closed subgroup.

- ▶ G is called **T-closed** if it is closed under matrix transpose $G^T = G$.
- ▶ G is called exp-closed if $X \in S(n, \mathbb{R})$, $\exp(X) \in G$ implies $\exp(tX) \in G$ for all $t \in \mathbb{R}$

Theorem

Let G be a T-closed, exp-closed, closed subgroup of $GL(n, \mathbb{R})$. Then $X := G\{I\} = G \cap P(n, \mathbb{R})$ is a completely geodesic, closed and embedded submanifold. This implies it is a $CAT(0)$ symmetric space.

**T-closed, exp-closed, closed
subgroups of $GL(n, \mathbb{R})$**

**“completely” geodesic,
closed and embedded sub-
manifolds of $P(n, \mathbb{R})$**

Let X be a completely geodesic, closed and embedded submanifold of $P(n, \mathbb{R})$. Then it is a CAT(0) symmetric space.

T-closed, exp-closed, closed subgroups of $GL(n, \mathbb{R})$

“completely” geodesic, closed and embedded submanifolds of $P(n, \mathbb{R})$

Theorem

Let X be a completely geodesic, closed and embedded submanifold of $P(n, \mathbb{R})$.

Then

$$G := \{g \in GL(n, \mathbb{R}) \mid t_g(X) = X\}$$

is a closed, T-closed, exp-closed subgroup of $GL(n, \mathbb{R})$ such that $X = G\{I\}$.

Let X be a completely geodesic, closed and embedded submanifold of $P(n, \mathbb{R})$. Then it is a $CAT(0)$ symmetric space.

Abelian subspaces of \mathfrak{p}

Flats in X

Abelian subspaces of \mathfrak{p}

Flats in X

Let $\text{Lie}(G) =: \mathfrak{g}$. The linear involution

$$\begin{aligned}\theta : \mathfrak{g} &\rightarrow \mathfrak{g} \\ X &\mapsto -X^T\end{aligned}$$

is diagonalizable, thus

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

Abelian subspaces of \mathfrak{p}

Flats in X

Let $\text{Lie}(G) =: \mathfrak{g}$. The linear involution

$$\begin{aligned}\theta : \mathfrak{g} &\rightarrow \mathfrak{g} \\ X &\mapsto -X^T\end{aligned}$$

is diagonalizable, thus

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

$$\{\mathfrak{b} \subseteq \mathfrak{p} \mid \forall X, Y \in \mathfrak{b}, [X, Y] = 0\}$$

Abelian subspaces of \mathfrak{g}

Let $\text{Lie}(G) =: \mathfrak{g}$. The linear involution

$$\theta : \mathfrak{g} \rightarrow \mathfrak{g}$$

$$X \mapsto -X^T$$

is diagonalizable, thus

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

We have a one-to one correspondence

$$\{\mathfrak{b} \subseteq \mathfrak{p} \mid \forall X, Y \in \mathfrak{b}, [X, Y] = 0\} \leftrightarrow \{\text{flat } F \subseteq X \mid I \in F\}$$

Flats in X

Definition

An embedded submanifold $F \subseteq X$ is a **flat** if it is distance isometric to \mathbb{R}^n .

Let $\text{Lie}(G) =: \mathfrak{g}$. The linear involution

$$\begin{aligned}\theta : \mathfrak{g} &\rightarrow \mathfrak{g} \\ X &\mapsto -X^T\end{aligned}$$

is diagonalizable, thus

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$$

We have a one-to one correspondence

$$\{\mathfrak{b} \subseteq \mathfrak{p} \mid \forall X, Y \in \mathfrak{b}, [X, Y] = 0\} \quad \leftrightarrow \quad \{\text{flat } F \subseteq X \mid I \in F\}$$

Definition

An embedded submanifold $F \subseteq X$ is a **flat** if it is distance isometric to \mathbb{R}^n .

Definition

The **rank** of X is the dimension of one of its maximal flat.

Boundary of X

Definition

The boundary ∂X of a $\text{CAT}(0)$ complete Riemannian manifold X is the set

$$\underline{\{ \gamma : [0, \infty) \rightarrow X \text{ is a geodesic ray} \}}$$

$$\gamma_1 \sim \gamma_2 \iff$$

$$\exists C > 0 : \forall t \geq 0, d(\gamma_1(t), \gamma_2(t)) \leq C$$

Boundary of X

Definition

The boundary ∂X of a CAT(0) complete Riemannian manifold X is the set

$$\frac{\{\gamma : [0, \infty) \rightarrow X \text{ is a geodesic ray}\}}{\gamma_1 \sim \gamma_2 \iff \exists C > 0 : \forall t \geq 0, d(\gamma_1(t), \gamma_2(t)) \leq C}$$

We equip $\overline{X} := X \cup \partial X$ with the cone topology. Then the isometries of X extend as homeomorphisms on \overline{X} .

Boundary of X

Definition

The boundary ∂X of a $\text{CAT}(0)$ complete Riemannian manifold X is the set

$$\frac{\{\gamma : [0, \infty) \rightarrow X \text{ is a geodesic ray}\}}{\gamma_1 \sim \gamma_2 \iff \exists C > 0 : \forall t \geq 0, d(\gamma_1(t), \gamma_2(t)) \leq C}$$

We equip $\overline{X} := X \cup \partial X$ with the cone topology. Then the isometries of X extend as homeomorphisms on \overline{X} .

$$G_\xi := \{g \in G \mid g(\xi) = \xi\}$$

Now we focus on the case of real hyperbolic space.

$$O^+(1, n)$$

$$\mathbb{R}H^n$$

Now we focus on the case of real hyperbolic space.

$$O^+(1, n)$$

$$\mathbb{R}H^n$$

$\mathbb{R}H^n$ is an isotropic Riemannian manifold and a CAT(-1) metric space.

Now we focus on the case of real hyperbolic space.

$$O^+(1, n)$$

$$\mathbb{R}H^n$$

$\mathbb{R}H^n$ is an isotropic Riemannian manifold and a CAT(-1) metric space.

The rank of $\mathbb{R}H^n$ is 1.

$$\Gamma \leqslant O^+(1, n)$$
 discrete
$$\Gamma \curvearrowright \overline{\mathbb{R}H^n}$$

Consider a discrete subgroup Γ of the isometry group $\text{Isom}(\mathbb{R}H^n) \cong O^+(1, n)$.

$\Gamma \leqslant O^+(1, n)$ **discrete**

$\Gamma \curvearrowright \overline{\mathbb{R}H^n}$

Consider a discrete subgroup Γ of the isometry group $\text{Isom}(\mathbb{R}H^n) \cong O^+(1, n)$.

Definition

The **limit set** of Γ is the set

$$\Lambda_\Gamma := \overline{\Gamma\{x\}} \cap \partial\mathbb{R}H^n$$

for some $x \in \mathbb{R}H^n$.

Definition

The **critical exponent** $\delta_\Gamma \in [0, n - 1]$ of Γ is the number

$$\inf \left\{ \alpha > 0 \left| \sum_{\gamma \in \Gamma} \exp(-\alpha d(\gamma(x), x)) < \infty \right. \right\}$$

for some $x \in \mathbb{R}H^n$.

There is a proof of Mostow rigidity of real hyperbolic manifolds by constructing a measure supported on the limit set Λ_Γ (Patterson-Sullivan measure) and an ergodic measure for the geodesic flow on real hyperbolic manifolds (Bowen-Margulis measure).

There is a proof of Mostow rigidity of real hyperbolic manifolds by constructing a measure supported on the limit set Λ_Γ (Patterson-Sullivan measure) and an ergodic measure for the geodesic flow on real hyperbolic manifolds (Bowen-Margulis measure).

We hope to understand the proof and look at possible generalizations of the theory in higher rank.

There is a proof of Mostow rigidity of real hyperbolic manifolds by constructing a measure supported on the limit set Λ_Γ (Patterson-Sullivan measure) and an ergodic measure for the geodesic flow on real hyperbolic manifolds (Bowen-Margulis measure).

We hope to understand the proof and look at possible generalizations of the theory in higher rank.

Thank you!

References

1. Martin R. Bridson, Andre Haefliger - Metric Spaces of Non-Positive Curvature
2. Werner Ballmann, Mikhael Gromov, Viktor Schroeder - Manifolds of Nonpositive Curvature (1985)
3. Peter J Nicholls - The Ergodic Theory of Discrete Groups (1989)