Driven by infinite enthusiasm
All opinion are strictly mine.
This list was made with materials mostly found on the internet, to reduce repetition from my side.
What to study? Where to study from?
(order is not strict, life is very non-linear)
This has five major sections
- journey starts: start with the little things and the big things
- discoveries: dive into math physics ✨
- a need for clarity and details: Linear constructions
- the old discoveries in new light: apply your new-found knowledge new way of looking at things never ends ✨
- epilogue: starting again?
start with the little things and the big things
little things: groups (group theory, group actions)
- One should start their journey with groups!
- Group theory, abstraction, and the 196,883-dimensional monster - YouTube
- Essence of Group Theory - YouTube
- Chapter 1 and 3 from evan-chen-napkin
- Artin’s Algebra is a good text.
big things: vector spaces (linear algebra)
More here: inculcation-linear-algebra
A very good place to start (basic) mathematics like linear algebra is to read chapters from Napkin:
Evan Chen Napkin
Link to original
- an introduction to a lots of fields of math! (NOT a textbook but a really nice introductory reference)
- starts with groups and metric spaces!
things in the middle: analysis
- definitely start with Tao’s Analysis volumes 1 and 2, but for more: [[inculcation#inside-reals-and-metric-spaces|Analysis in ]]
-
Anaysis and linear algebra in
- from evan-chen-napkin
- Chapters 26-30 - Calculus 101
- Chapters 42-45 - Total derivatives and differential forms
- Chapters 2, 6-8 - Topology
- shifrin-multivariable-mathematics - a 2 semester course/book that covers linear algebra and (proper) multivariable calc
- from evan-chen-napkin
- more in Linear constructions
mechanics
If you’re into physics, start here with
Transclude of inculcation-all-of-mechanics#keitg9
This is how I started! Its the “non-conventional” route, study major building blocks of physics at once because
Quote
“Nature doesn’t work in semesters.” - T Paddy
dive into math/physics ✨
The first section had groups, vector spaces and analysis. Now we shall continue and add some geometry, dynamics and physics too!
continue with algebra
lectures
Abstract Algebra by Benedict Gross - YouTubebook
Artin - Algebrabook
Algebra Chapter 0
continue real analysis
After
Inside reals and metric spaces
- #book Tao Analysis vol I, II - this is the best reference for any beginner!
- #book Apostol - Mathematical Analysis
- #book Rudin Analysis (Baby Rudin)
Analysis in
- Construct(!!) from
- Sequences, limits of sequences
Metric spaces with the intuition of
- Sequences and series
- limits of functions, continuous functions
- get motivated for topological spaces: prove the theorem that a function is continuous if and only if preimage of open sets is open
Link to original
we move onto finite-dimensional vector spaces or just .
cute topology and geometry
-
differential geometry of curves and surfaces in
- AKA what I would call spicy multi-variable calculus in dimension 3!
lectures
ICTP Diploma - Differential Geometry - Claudio Arezzo - YouTube- These lectures has pre-requisites of baisic linear algebra, analysis in ” knowing total derivatives and bilinear forms with introducing yourself a little topology (compactness, connectedness)
-
cute topology
- how topology affects and interacts with geometry, analysis, algebra (Lie groups, say) and physics
dynamical systems and ODEs
vector fields and ODE dictionary
What we do is, write a differential equation like
for all so we have equations for variables and make it even more compact by
where is a vector field on the open domain .
This gives us a geometric pov on ODEs in , and we have a
solving differential equations analysis and geometry of vector fields an equation a vector field solutions of the equation integral curves of the vector field how solutions depend on initial conditions flows of the vector field conserved quantities integrals of the vector field (linearly) decoupling the differential equation (linear) coordinate transformation such that This is a standard geometric interpretation.
We may convert ordinary differential equation of any order to first order by taking enough independent variables and defining them to be higher derivatives.
Link to original
More on this: inculcation-odes
probability and information
Well, I have no idea yet!
handwavey physics
- Start with inculcation-all-of-mechanics
- Definitely do more math: lie groups, representations, fluid dynamics, and classical mechanics etc before quantum, or atleast before doing quantum a second time.
Linear constructions
Inculcation: Linear constructions
main article: inculcation
Now that you see how deep things are, go back and focus on the details.
Life is very non-linear, but arguments should not be circular.
Philosophy: construct spaces and do algebra, analysis, geometry, and whatever we can do!
- the idea is to create meaning, objects out of nothing…, even in familiar spaces and then going to unfamiliar ones!
- reminder: nothing (even rigor) is more scary than doing wrong stuff!
We start with logic and set theory, do analysis, algebra, geometry and topology: there is no actual distinction between their build-up, only in their vibes.
- build the grounds
- logic: propositional
- logic: first order
- first order set theory
- build structures on sets (or beyond) and work inside
- inside
- out on groups
- out on metric spaces
- inside
- out on vector spaces
- out on normed -vector spaces, inner product spaces
- surfaces inside , in submanifolds of
- out on rings and fields
- out on modules
- in graphs
- out on categories
- out on topological spaces
- out on measure spaces
- out on smooth manifolds
- smooth manifolds with more structures
- out on infinite dim spaces
- what do we do now? everything here have a tiny different vibes
- analysis
- ODEs
- PDEs
- geometry
- dynamics
- mechanics
- algebra
- finite groups
- representations
- Lie algebras
- topology and algebraic topology
- algebraic geometry
- number theory
Inside reals and metric spaces
- #book Tao Analysis vol I, II - this is the best reference for any beginner!
- #book Apostol - Mathematical Analysis
- #book Rudin Analysis (Baby Rudin)
Analysis in
- Construct(!!) from
- Sequences, limits of sequences
Metric spaces with the intuition of
- Sequences and series
- limits of functions, continuous functions
- get motivated for topological spaces: prove the theorem that a function is continuous if and only if preimage of open sets is open
Inside finite dim vector spaces
We do more inside and venture slightly out to do analysis in finite-dim real normed vector spaces, which are of course linearly bijective to .
In normed vector spaces
Differential geometry of submanifolds of
lecturenotes
diffgeo.pdf (ethz.ch) One can distinguish extrinsic differential geometry and intrinsic differential geometry. The former restricts attention to submanifolds of Euclidean space while the latter studies manifolds equipped with a Riemannian metric. The extrinsic theory is more accessible because we can visualize curves and surfaces in , but some topics can best be handled with the intrinsic theory…- better thing to do is directly jump to smooth manifolds altogether.
Living completely outside
Going outside of (or finite dim vector spaces) for analysis: there are two routes
- analysis on (finite dim) manifolds (comes up in classical mechanics, ODEs, Hamiltonian systems, oscillations)
- analysis in function spaces(infinite dim complete normed/inner product spaces) (comes up in quantum mechanics, PDEs, waves)
Analysis in finite dimensional vector spaces was just the beginning 🔥🔥🔥
Measure spaces (measure theory)
Topological spaces
AKA the fields of topology, algebraic topology
First semester course on Topology (AKA general topology/point set topology) - as opposed to cute topology, we prove more content here
- #book Munkres
- http://www.math.toronto.edu/ivan/mat327/?resources
- http://math.iisc.ac.in/~gadgil/topology-2021/all-lectures/
- Topology (MTH-TOP) - YouTube
- For a quick one lecture introduction with motivation: Lecture 1: Topology (International Winter School on Gravity and Light 2015) - YouTube
First semester course on Algebraic topology - study of holes in topological spaces
We learn homotopy groups, homology groups and at last cohomology groups!
Out on smooth manifolds
AKA “intrinsic differential geometry” or analysis on manifolds.
May try#lectures Frederic Schuller -International Winter School on Gravity and Light 2015 without any other context or to get into it fully: inculcation-smooth-manifolds.
Inside infinite dim spaces
AKA functional analysis!
Link to original
- #lectures Frederic Schuller - Quantum Theory
<some book before Papa Rudin>
- Papa Rudin
apply your new-found knowledge: new way of looking at things never ends ✨
With the language of manifolds/normed vector spaces we can work in geometry, topology and physics properly! (no handwaves!)
- geometry
- Riemannian geometry, semi-Riemannian geometry, GR
- dynamics
- ODEs Inculcation: ODEs AKA smooth dynamical systems
- inculcation-dynamics
- Ergodic theory, dynamical systems in measure spaces
- inculcation-geodesic-flows
- Mechanics of points done properly
- inculcation-groups, Lie groups
- PDEs
talk
Mathematics of Turbulent Flows: A Million Dollar Problem! by Edriss S Titi - YouTube- Hamiltonian systems and symplectic geometry
- Thermodynamic systems, ODEs and contact geometry
- QM and quantum theories quantization of the mechanics of points
lecturenotes
Use measure theory to do Classical Equilibrium Statistical Mechanics- Differential topology, or algebriac topology with a differential viewpoint
- Probability, information theory, information geometry
starting again?
How to study?
-
How to do lectures?
- Use https://obsidian.md to organize the amount of content/
- Copy the lecture note
- Complete each lecture and tick the check box.
- Make lecture notes
- in Obsidian.
- you’ll need to learn LaTeX and probably will need a drawing tablet
- in physical notebook.
- Scan the lecture notes as PDF into one file and save it inside your vault.
- Might seem/be a waste of time, but loosing hard worked lecture notes/not organizing them is a bigger loss.
- Filling pages upon pages and never returning back onto them is NOT the process, it seems ro me. Return to the notes, think, and solve your own questions.
- in Obsidian.
- Use https://obsidian.md to organize the amount of content/
more references, roadmaps
Stuff missing from here
- Number theory!
- Graph theory, algorithms, combinatorics, etc.
Newsletter?, channel, chat?
You may want to join academic curiosity whatsapp community here for more math content!
- Look here:
- The fast track – Sheafification
- How to become a GOOD Theoretical Physicist (goodtheorist.science)
- http://theportal.wiki/wiki/Read
20-prerequisites-for-quantum-mechanicsbook
Paddy - Theoretical Astrophysics volumes I, II & III
- Watch (any one or all even) these one lecture and tell me how can you not love this!! (don’t pay attention to the name of the video)